穿越位面而来的旅人,
欢迎你来到萨鲁世界,
我为你带来一个消息,
先知邀请你前去见他。

不去                好的
查看: 3865|回复: 10

人择原理/延迟试验 [复制链接]

amor fati amor mundi

冒险者

光源 发表于 2009-7-12 19:28:22 |显示全部楼层
人择原理延迟试验,这两个理论/现象看起来总是有点迷惑,觉得有道理却不对劲。等待高人解答。

Gloria in Excelsis Deo

光之洗礼

ck7543 发表于 2009-7-12 23:30:06 |显示全部楼层
量子理论里有个不确定性原理。

使用道具 举报

amor fati amor mundi

冒险者

光源 发表于 2009-7-13 23:53:03 |显示全部楼层
全能的CK啊...你就多讲讲吧

使用道具 举报

光之洗礼

ck7543 发表于 2009-7-14 08:01:43 |显示全部楼层
不确定性原理, 又名“测不准原理”、“不确定关系”,英文"Uncertainty principle",是量子力学的一个基本原理,由德国物理学家海森堡于1927年提出。
  该原理表明:一个微观粒子的某些物理量(如位置和动量,或方位角与动量矩,还有时间和能量等),不可能同时具有确定的数值,其中一个量越确定,另一个量的不确定程度就越大。测量一对共轭量的误差的乘积必然大于常数 h/2π (h是普朗克常数)是海森伯在1927年首先提出的,它反映了微观粒子运动的基本规律,是物理学中又一条重要原理。海森伯在创立矩阵力学时,对形象化的图象采取否定态度。但他在表述中仍然需要使用“坐标”、“速度”之类的词汇,当然这些词汇已经不再等同于经典理论中的那些词汇。可是,究竟应该怎样理解这些词汇新的物理意义呢?海森伯抓住云室实验中观察电子径迹的问题进行思考。他试图用矩阵力学为电子径迹作出数学表述,可是没有成功。这使海森伯陷入困境。他反复考虑,意识到关键在于电子轨道的提法本身有问题。人们看到的径迹并不是电子的真正轨道,而是水滴串形成的雾迹,水滴远比电子大,所以人们也许只能观察到一系列电子的不确定的位置,而不是电子的准确轨道。因此,在量子力学中,一个电子只能以一定的不确定性处于某一位置,同时也只能以一定的不确定性具有某一速度。可以把这些不确定性限制在最小的范围内,但不能等于零。这就是海森伯对不确定性最初的思考。据海森伯晚年回忆,爱因斯坦1926年的一次谈话启发了他。爱因斯坦和海森伯讨论可不可以考虑电子轨道时,曾质问过海森伯:“难道说你是认真相信只有可观察量才应当进入物理理论吗?”对此海森伯答复说:“你处理相对论不正是这样的吗?你曾强调过绝对时间是不许可的,仅仅是因为绝对时间是不能被观察的。”爱因斯坦承认这一点,但是又说:“一个人把实际观察到的东西记在心里,会有启发性帮助的……在原则上试图单靠可观察量来建立理论,那是完全错误的。实际上恰恰相反,是理论决定我们能够观察到的东西……只有理论,即只有关于自然规律的知识,才能使我们从感觉印象推论出基本现象。”
  海森伯在1927年的论文一开头就说:“如果谁想要阐明‘一个物体的位置’(例如一个电子的位置)这个短语的意义,那么他就要描述一个能够测量‘电子位置’的实验,否则这个短语就根本没有意义。”海森伯在谈到诸如位置与动量,或能量与时间这样一些正则共轭量的不确定关系时,说:“这种不确定性正是量子力学中出现统计关系的根本原因。”
  海森伯测不准原理是通过一些实验来论证的。设想用一个γ射线显微镜来观察一个电子的坐标,因为 γ射线显微镜的分辨本领受到波长λ的限制,所用光的波长λ越短,显微镜的分辨率越高,从而测定电子坐标不确定的程度△q就越小,所以△q∝λ。但另一方面,光照射到电子,可以看成是光量子和电子的碰撞,波长λ越短,光量子的动量就越大,所以有△p∝1/λ。经过一番推理计算,海森伯得出:△q△p=h /4π。海森伯写道:“在位置被测定的一瞬,即当光子正被电子偏转时,电子的动量发生一个不连续的变化,因此,在确知电子位置的瞬间,关于它的动量我们就只能知道相应于其不连续变化的大小的程度。于是,位置测定得越准确,动量的测定就越不准确,反之亦然。”
  海森伯还通过对确定原子磁矩的斯特恩-盖拉赫实验的分析证明,原子穿过偏转所费的时间△T越长,能量测量中的不确定性△E就越小。再加上德布罗意关系λ=h/p,海森伯得到△E△T<h,并且作出结论:“能量的准确测定如何,只有靠相应的对时间的测不准量才能得到。”
  海森伯的测不准原理得到了玻尔的支持,但玻尔不同意他的推理方式,认为他建立测不准关系所用的基本概念有问题。双方发生过激烈的争论。玻尔的观点是测不准关系的基础在于波粒二象性,他说:“这才是问题的核心。”而海森伯说:“我们已经有了一个贯彻一致的数学推理方式,它把观察到的一切告诉了人们。在自然界中没有什么东西是这个数学推理方式不能描述的。”玻尔则说:“完备的物理解释应当绝对地高于数学形式体系。”
  玻尔更着重于从哲学上考虑问题。1927年玻尔作了《量子公设和原子理论的新进展》的演讲,提出著名的互补原理。他指出,在物理理论中,平常大家总是认为可以不必干涉所研究的对象,就可以观测该对象,但从量子理论看来却不可能,因为对原子体系的任何观测,都将涉及所观测的对象在观测过程中已经有所改变,因此不可能有单一的定义,平常所谓的因果性不复存在。对经典理论来说是互相排斥的不同性质,在量子理论中却成了互相补充的一些侧面。波粒二象性正是互补性的一个重要表现。测不准原理和其它量子力学结论也可从这里得到解释。
科学理论,特别是牛顿引力论的成功,使得法国科学家拉普拉斯侯爵在 19世纪初论断,宇宙是完全被决定的。他认为存在一组科学定律,只要我们完全知道宇宙在某一时刻的状态,我们便能依此预言宇宙中将会发生的任一事件。例如,假定我们知道某一个时刻的太阳和行星的位置和速度,则可用牛顿定律计算出在任何其他时刻的太阳系的状态。这种情形下的宿命论是显而易见的,但拉普拉斯进一步假定存在着某些定律,它们类似地制约其他每一件东西,包括人类的行为。
  很多人强烈地抵制这种科学宿命论的教义,他们感到这侵犯了上帝干涉世界的自由。但直到20世纪初,这种观念仍被认为是科学的标准假定。这种信念必须被抛弃的一个最初的征兆,是由英国科学家瑞利勋爵和詹姆斯·金斯爵士所做的计算,他们指出一个热的物体——例如恒星——必须以无限大的速率辐射出能量。按照当时我们所相信的定律,一个热体必须在所有的频段同等地发出电磁波(诸如无线电波、可见光或X射线)。例如,一个热体在1万亿赫兹到2万亿赫兹频率之间发出和在2万亿赫兹到3万亿赫兹频率之间同样能量的波。而既然波的频谱是无限的,这意味着辐射出的总能量必须是无限的。
  为了避免这显然荒谬的结果,德国科学家马克斯·普郎克在1900年提出,光波、X射线和其他波不能以任意的速率辐射,而必须以某种称为量子的形式发射。并且,每个量子具有确定的能量,波的频率越高,其能量越大。这样,在足够高的频率下,辐射单独量子所需要的能量比所能得到的还要多。因此,在高频下辐射被减少了,物体丧失能量的速率变成有限的了。
  量子假设可以非常好地解释所观测到的热体的发射率,但直到1926年另一个德国科学家威纳·海森堡提出著名的不确定性原理之后,它对宿命论的含义才被意识到。为了预言一个粒子未来的位置和速度,人们必须能准确地测量它现在的位置和速度。显而易见的办法是将光照到这粒子上,一部分光波被此粒子散射开来,由此指明它的位置。然而,人们不可能将粒子的位置确定到比光的两个波峰之间距离更小的程度,所以必须用短波长的光来测量粒子的位置。现在,由普郎克的量子假设,人们不能用任意少的光的数量,至少要用一个光量子。这量子会扰动这粒子,并以一种不能预见的方式改变粒子的速度。而且,位置测量得越准确,所需的波长就越短,单独量子的能量就越大,这样粒子的速度就被扰动得越厉害。换言之,你对粒子的位置测量得越准确,你对速度的测量就越不准确,反之亦然。海森堡指出,粒子位置的不确定性乘上粒子质量再乘以速度的不确定性不能小于一个确定量——普郎克常数。并且,这个极限既不依赖于测量粒子位置和速度的方法,也不依赖于粒子的种类。海森堡不确定性原理是世界的一个基本的不可回避的性质。
  不确定性原理对我们世界观有非常深远的影响。甚至到了50多年之后,它还不为许多哲学家所鉴赏,仍然是许多争议的主题。不确定性原理使拉普拉斯科学理论,即一个完全宿命论的宇宙模型的梦想寿终正寝:如果人们甚至不能准确地测量宇宙的现在的态,就肯定不能准确地预言将来的事件了!我们仍然可以想像,对于一些超自然的生物,存在一组完全地决定事件的定律,这些生物能够不干扰宇宙地观测它现在的状态。然而,对于我们这些芸芸众生而言,这样的宇宙模型并没有太多的兴趣。看来,最好是采用称为奥铿剃刀的经济学原理,将理论中不能被观测到的所有特征都割除掉。20世纪20年代。在不确定性原理的基础上,海森堡、厄文·薛定谔和保尔·狄拉克运用这种手段将力学重新表达成称为量子力学的新理论。在此理论中,粒子不再有分别被很好定义的、能被同时观测的位置和速度,而代之以位置和速度的结合物的量子态。
  一般而言,量子力学并不对一次观测预言一个单独的确定结果。代之,它预言一组不同的可能发生的结果,并告诉我们每个结果出现的概率。也就是说,如果我们对大量的类似的系统作同样的测量,每一个系统以同样的方式起始,我们将会找到测量的结果为A出现一定的次数,为B出现另一不同的次数等等。人们可以预言结果为A或B的出现的次数的近似值,但不能对个别测量的特定结果作出预言。因而量子力学为科学引进了不可避免的非预见性或偶然性。尽管爱因斯坦在发展这些观念时起了很大作用,但他非常强烈地反对这些。他之所以得到诺贝尔奖就是因为对量子理论的贡献。即使这样,他也从不接受宇宙受机遇控制的观点;他的感觉可表达成他著名的断言:“上帝不玩弄骰子。”然而,大多数其他科学家愿意接受量子力学,因为它和实验符合得很完美。它的的确确成为一个极其成功的理论,并成为几乎所有现代科学技术的基础。它制约着晶体管和集成电路的行为,而这些正是电子设备诸如电视、计算机的基本元件。它并且是现代化学和生物学的基础。物理科学未让量子力学进入的唯一领域是引力和宇宙的大尺度结构。

使用道具 举报

光之洗礼

ck7543 发表于 2009-7-14 08:07:09 |显示全部楼层
人择原理
  人择宇宙学原理Anthropic Cosmological Principle(简称人择原理Anthropic Principle),概括的讲是尝试从物理学的角度解释“为什么我们的宇宙是这样的”,而人择原理的答案是,“某程度上是因为这样的宇宙才允许类似人类的智慧物种存在,才有可能会有生物意识到有宇宙这个概念”。这条原理很复杂,但简而言之,即谓正是人类的存在,才能解释我们这个宇宙的种种特性,包括各个基本自然常数。因为宇宙若不是这个样子,就不会有我们这样的智慧生命来谈论他。
  人择原理的最早起源不明,大多数可查证的资料都在上世纪,同时也被认为和意识形态有关,哲学家们似乎并不意外物理学家提出的人择原理。1973年英国天体物理学家布兰登·卡特(Brandon Carter)在哥白尼诞辰500周年时提出了人择原理并将其分为两种:弱人择原理和强人择原理。弱人择原理认为:作为观察者的我们之所以存在于这个时空位置,是因为这个位置提供了我们存在的可能。而强人择原理则认为:我们的宇宙(同时也包括那些基本的物理常数)必须允许观察这在某一阶段出现。卡特提出人择原理后,很多人对其作了解读和发展,其中最引人注目的是宇宙学家约翰·巴罗(John D. Barrow)和物理学家弗兰克·提普勒(Frank J. Tipler)。同时,理论物理学家斯蒂芬·威廉·霍金也在《时间简史》一书中提到了人择原理,他把它称作“人存原理”。人择原理被分为三种,弱人择原理、强人择原理和终极人择原理。人们通常使用巴罗等人提出的叙述:
  弱人择原理(Weak anthropic principle (WAP)):物理学和宇宙学的所有量的观测值,不是同等可能的;它们偏爱那些应该存在使碳基生命得以进化的地域以及宇宙应该足够年老以便做到这点等等条件所限定的数值。(约翰·巴罗(John D. Barrow) 和弗兰克·提普勒(Frank J. Tipler),1986)
  强人择原理(Strong anthropic principle (SAP)):宇宙必须具备允许生命在其某个历史阶段得以在其中发展的那些性质。
  最终人择原理(Final anthropic principle (FAP)):包含智慧的信息处理过程一定会在宇宙中出现,而且,它一旦出现就不会灭亡。
  弱人择原理认为我们生存在众多个宇宙演化模型中一个,假如我们不是身处现在这模型,即宇宙会以不同方式演化,我们也不会在这里。而强人择原理就更肯定宇宙一定会生出有智慧生物,不允许宇宙以其他不能够令我们生存之选择出现。当我们出现后,文化将会以一种有智慧的形式存在下去并传遍宇宙,并终会达到极点和其他宇宙进行交流。多数物理学家都不大喜欢强人择原理。
  美国业余数学家马丁·加德纳(Martin Gardner)无情地嘲笑了巴罗等人的最终人择原理。他“恶搞”出了一个“完全荒谬人择原理(Completely ridiculous anthropic principle (CRAP))”:生命会掌握所有的物质和力量,不止在一个宇宙,而是在所有逻辑上可能存在的宇宙;生命将会传播到逻辑上可能存在的所有宇宙的每一个角落,而且将会储存所有逻辑上可能被理解的、无限的知识。
  这个原理采取的观点同完美宇宙学原理正好相反,宣称人类是在一个特定时期观察着宇宙的,尽管目前的宇宙从空间任何点看去显得一样。假设这个特定时期是因为需要产生那些有利于生命演化的特殊条件,比方说,假如宇宙比现在炽热得多或稠密得多,星系就不能形成;假如引力的强度和我们的观测值大不相同,行星系统就不能形成,或不适合于我们所知的生命形式存在。现已查明,地球的年龄和天文学家发现的最老恒星或星系的年龄相仿(顶多差4倍),这毕竟是一个惊人的符合。人择宇宙学原理用“许可”来解释这种相似性。宇宙本来可以比它实际的情形不规则和无序得多。人择宇宙学原理断言,若是那样的话,各种条件就不能容许生命存在了。因此,作为观察者,我们是生活在一个非常特殊的宇宙中,并且这个宇宙必须是均匀各向同性的。“人择”是一个非常基本的论据,因为它试图对哥白尼宇宙学原理作出解释,而后者几乎是所有有生命力的宇宙论的核心。
  人择原理可以释义作:“我们看到的宇宙之所以这个样子,乃是因为我们的存在。”
  人择原理有弱的和强的意义下的两种版本。弱人择原理是讲,在一个大的或具有无限空间和/或时间的宇宙里,只有在空间一时间有限的一定区域里,才存在智慧生命发展的必要条件。在这些区域中,如果智慧生物观察到他们在宇宙的位置满足那些为他们生存所需的条件,他们不应感到惊讶。这有点像生活在富裕街坊的富人看不到任何贫穷。
  应用弱人则原理的一个例子是“解释”为何大爆炸发生于大约100亿年之前——智慧生物需要那么长时间演化。一个早期的恒星必须首先形成,这些恒星将一些原先的氢和氦转化成像碳和氧这样的元素,由这些元素构成我们。然后恒星作为超新星而爆发,其裂片形成其他恒星和行星,其中包括太阳系,太阳系的年龄大约是50亿年,地球存在的头10到20亿年,对于任何复杂东西的发展都太热了。余下的30亿年才用于生物进化的漫长过程,这个过程导致从最简单的机体到能够测量回溯到大爆炸那一瞬间的生物的形成。
  很少人会对弱人择原理的有效性提出异议。然而,有的人走得更远并提出强人择原理。按照这个理论,存在许多不同的宇宙或者一个单独宇宙的许多不同的区域,每一个都有自己初始的结构,或许还有自己的一套科学定律。在这些大部分宇宙中,不具备复杂组织发展的条件;只有很少像我们的宇宙,在那里智慧生命得以发展并质疑:“为何宇宙是我们看到的这种样子?”这回答很简单:如果它不是这个样子,我们就不会在这儿!
  对于强人择原理就略有不同,人们可以提出一系列理由,来反对用强人择原理解释所观察到的宇宙状态。首先,在何种意义上可以说,所有这些不同的宇宙存在?如果它们确实互相隔开,在其他宇宙发生的事件怎么可能在我们自己的宇宙中没有可观测的后果?所以,我们应该用经济学原理,将他们从理论中割除出去。另一方面,如果它们只是一个单独宇宙的不同区域,则在每个区域里的科学定律必须一致,否则人们不能从一个区域连续地运动到另一区域。在这种情况下,不同区域之间仅有的不同只是他们的初始结构,这样,强人择原理及归结为弱人择原理。
  对强人择原理的第二个异议是,它和整个科学史的潮流背道而驰。我们现代的图像是从托勒密和他的支持者的地心宇宙论出发,通过哥白尼和伽利略日心说发展而来的。在此图像中,地球是一个中等大小的行星,它绕着一个寻常的螺旋星系外圈的普通恒星做公转,而这星系本身只是在可观察到的宇宙中万亿个星系中的一个。然而强人择原理却宣布,这整个庞大的构造仅仅是为我们的缘故而存在,这是令人非常难以置信的。我们太阳系肯定是我们存在的前提,人们可以将之推广于我们的星系,使之允许早期的恒星产生重元素。但是,丝毫看不出存在任何其他星系的必要,在大尺度上也不需要宇宙在每一方向上必须如此的一致。
  人择原理:“人择原理”最早的表达是:自然定律惊人地适合生命的存在。
  一般的说法是:自然律应该允许向自然律发问的智慧生命存在。
  这种一般的说法有些难以理解,通俗地说就是:
  自然定律应该符合人类的基本逻辑思维方法。
  至于强和弱应该是没有定义的,只是对“符合人类的基本逻辑思维方法”理解的程度问题。
  所谓的人择原理试图解释宇宙存在的根本性问题,那就是为什么宇宙是适合智慧生命比如我们人类生存的?对于这个问题,人择原理给出的答案是:如果宇宙不是现在这个适合智慧生命存在的话,也就不会有我们这些智慧生命来提出这个问题了。宇宙是这个样子,是因为我们看到它是这个样子。
  为何事物如现在那样
  (异调注:本文中的“人类学原理”,“强人类学原理”和“弱人类学原理”,一般翻译为“人择原理”,“强人择原理”和“弱人择原理”。)
  1988年11月,科学家们就一直讨论多年的论题——人类学的原理,召开了一次极有权威的科学会议。
  “人类学的”(Anthropic)一词源于希腊语,意思是“与人有关的”。人类学原理试图强调人类,作为目击者,对宇宙的真正存在来说是必需的。
  也许看来它的反面是正确的。我们是在一颗普通恒星的一个小的行星上,而这颗恒星湮没于包含了几千亿颗恒星的一个星系里,还有另外的恒星在其他1000亿个星系里。为什么如此无法想象的庞大的一个宇宙居然仅为我们而存在?
  答案则是宇宙越小,它膨胀然后收缩而绝灭所需的时间就越少。对我们来说,为了取得进化时间,宇宙必须像它现在那样大。
  此外,自然规律使得原子能够形成。假如这些规律稍有不同,原子便不可能形成。而且,大爆炸以后有过的经历似乎使恒星和星系得以形成。稍有差异原本就会使它们的形成变为不可能。要不是原子、恒星和星系刚好能形成的话,那么我们自己就不可能形成。
  甚至说到地球,地球轨道或太阳质量的略微变化便会使地球无法居住。即使它能居住,其物质的组成和化学性质的微小改变——例如,假如水变成冰时并不膨胀,或者假如碳原子不能彼此钩连在一起的话——将会使生命成为不可能。
  量子理论也使得我们好像是必不可少的。根据量子理论,在有些情况下,我们实际上只有直到观测到电子时才可能辨别它在做什么。当没有观测到电子时,即使理论上也不可能推断它在做什么。某些科学家认为这意味着如果没有目击者,宇宙便不会存在。
  按照这个理论,宇宙必须有目击者,而且自始至终必须有目击者。但另一方面,直到宇宙150亿岁时,最早的人类才进化。恐龙曾有资格当目击者吗?直到宇宙100亿岁时,地球本身才形成。这是否意味着在其他行星上有别的形式的生命曾作见证?否则它是否意味着宇宙是上帝仅仅为了人类的利益而创造的?而且那个上帝从头到尾是宇宙永恒的监护人吗?根据“强人类学原理”,这个假定似乎是必然的。
  我们怎样能断定这种弱人类学原理是否正确呢?毕竟,我们自己的宇宙是我们所能观测的唯一一个宇宙。一位意大利科学家E.W.赛阿默(E. W. Sciama)曾提出一个建议。
  要是有无数个宇宙的话,那么可能有许多宇宙足够接近完美而容许我们这种生命生存。我们的宇宙应只是它们中的一个,且它也许不是最臻于完美的。
  要是我们更多地了解我们的宇宙,要是我们能作比至今已作的更精密的测量,要是我们能比现在更多地认识到生命及其需求,则或许我们会知道我们的宇宙并不是十分完美的。我们甚至可借助修正这个自然规律的精确形式或那个常数的精确值,设法设计(在脑海里)一
  个比我们的宇宙更合适的宇宙。
  要是我们自己的宇宙显得有点不完美的话,更可能的情况是只有很少的宇宙能适合于我们。这便使弱人类学原理似乎更可能些,而这便是反对强人类学原理的一个论点。
  如果人择原理成立,那么一切的科学探索不是显得毫无意义!!
  因为我们之所以看到的宇宙是这个样子,只是因为如果它不是这个样子我们就不会
  在这里去观察它的思想!!!
  但这样所有的科学探索还有意义吗?????
  然而,大多数科学家更喜欢“弱人类学原理”。为了理解其意义是什么,请你考虑一下这个问题:为何你的耳朵就具有它们现在所有的形状和位置?答案也许是使得眼镜能配戴在耳朵上。假如那样的话,耳朵必须存在且必须在它们现在的地方,而这正是眼镜的存在所决定的。
  但它是从相反方向来理解的。眼镜被设计来适合耳朵,而不是反过来。假如耳朵长在别的地方或根本就不存在的话,那么就会以不同的样式设计眼镜。
  同样情况,有可能存在无限多的宇宙,每个宇宙具有一组不同的自然规律。或许这无限多的宇宙中,除了一个之外,其余的宇宙所具有的自然规律都不容许生命存在。而仅有一个宇宙里,其自然规律确实考虑到了生命的存在。
  这一个宇宙就应是我们的宇宙,而我们就在其中经历了进化,然后对这个宇宙显得多么恰好地适合于我们感到惊异。但这实在与我们毫无关系。我们发觉我们的宇宙的完美仅仅因为它是唯一的我们能在其中生存的宇宙。多半,在其他的生命(如我们所知的)不可能存在的宇宙里,别的种类的生命或别的类型的无法想象的现象也许会盛行。而且这些生命或现象中的每一种,若具有惊奇的能力的话,便会惊奇为何它们的宇宙显得如此适合于它们。
  要是有无数个宇宙的话,那么可能有许多宇宙足够接近完美而容许我们这种生命生存。我们的宇宙应只是它们中的一个,且它也许不是最臻于完美的。

使用道具 举报

光之洗礼

ck7543 发表于 2009-7-14 08:12:32 |显示全部楼层
延迟试验
  1979年是爱因斯坦诞辰100周年,在他生前工作的普林斯顿召开了一次纪念他的讨论会。在会上,爱因斯坦的同事,也是玻尔的密切合作者之一约翰·惠勒(John Wheeler)提出了一个相当令人吃惊的构想,也就是所谓的“延迟实验”(delayed choice experiment)。我们已经对电子的双缝干涉非常熟悉了,根据哥本哈根解释,当我们不去探究电子到底通过了哪条缝,它就同时通过双缝而产生干涉,反之,它就确实地通过一条缝而顺便消灭干涉图纹。惠勒通过一个戏剧化的思维实验指出,我们可以“延迟”电子的这一决定,使得它在已经实际通过了双缝屏幕之后,再来选择究竟是通过了一条缝还是两条!
  这个实验的基本思路是,用涂着半镀银的反射镜来代替双缝。一个光子有一半可能通过反射镜,一半可能被反射,这是一个量子随机过程,跟它选择双缝还是单缝本质上是一样的。把反射镜和光子入射途径摆成45度角,那么它一半可能直飞,另一半可能被反射成 90度角。但是,我们可以通过另外的全反射镜,把这两条分开的岔路再交汇到一起。在终点观察光子飞来的方向,我们可以确定它究竟是沿着哪一条道路飞来的。
  但是,我们也可以在终点处再插入一块呈45度角的半镀银反射镜,这又会造成光子的自我干涉。如果我们仔细安排位相,我们完全可以使得在一个方向上的光子呈反相而相互抵消,而在一个确定的方向输出。这样的话我们每次都得到一个确定的结果(就像每次都得到一个特定的干涉条纹一样),根据量子派的说法,此时光子必定同时沿着两条途径而来!
  总而言之,如果我们不在终点处插入半反射镜,光子就沿着某一条道路而来,反之它就同时经过两条道路。现在的问题是,是不是要在终点处插入反射镜,这可以在光子实际通过了第一块反射镜,已经快要到达终点时才决定。我们可以在事情发生后再来决定它应该怎样发生!如果说我们是这出好戏的导演的话,那么我们的光子在其中究竟扮演了什么角色,这可以等电影拍完以后再由我们决定!
  虽然听上去古怪,但这却是哥本哈根派的一个正统推论!惠勒后来引玻尔的话说,“任何一种基本量子现象只在其被记录之后才是一种现象”,我们是在光子上路之前还是途中来做出决定,这在量子实验中是没有区别的。历史不是确定和实在的——除非它已经被记录下来。更精确地说,光子在通过第一块透镜到我们插入第二块透镜这之间“到底”在哪里,是个什么,是一个无意义的问题,我们没有权利去谈论它,它不是一个 “客观真实”!惠勒用那幅著名的“龙图”来说明这一点,龙的头和尾巴(输入输出)都是确定的清晰的,但它的身体(路径)却是一团迷雾,没有人可以说清。
  在惠勒的构想提出5年后,马里兰大学的卡洛尔?阿雷(Carroll O Alley)和其同事当真做了一个延迟实验,其结果真的证明,我们何时选择光子的“模式”,这对于实验结果是无影响的(和玻尔预言的一样,和爱因斯坦的相反!),与此同时慕尼黑大学的一个小组也作出了类似的结果。
  这样稀奇古怪的事情说明了什么呢?
  这说明,宇宙的历史,可以在它实际发生后才被决定究竟是怎样发生的!在薛定谔的猫实验里,如果我们也能设计某种延迟实验,我们就能在实验结束后再来决定猫是死是活!比如说,原子在1点钟要么衰变毒死猫,要么就断开装置使猫存活。但如果有某个延迟装置能够让我们在2点钟来“延迟决定”原子衰变与否,我们就可以在2点钟这个“未来”去实际决定猫在1点钟的死活!
  这样一来,宇宙本身由一个有意识的观测者创造出来也不是什么不可能的事情。虽然宇宙的行为在道理上讲已经演化了几百亿年,但某种“延迟”使得它直到被一个高级生物所观察才成为确定。我们的观测行为本身参予了宇宙的创造过程!这就是所谓的“参予性宇宙”模型(The Prticipatory Universe)。宇宙本身没有一个确定的答案,而其中的生物参予了这个谜题答案的构建本身!惠勒的经典延迟实验
  John Archibald Wheeler是那些认真考虑过量子力学的人之一。在研究了哥本哈根对双缝实验的解释---强调观察者知道的和观察者何时知道---之后,惠勒认识到观察者的选择可能会控制那些到实验中的变量。
  “如果你说的是真的”惠勒说(事实上),“那么我会在一件事情可能已经发生后再选择知道一个特性”惠勒意识到在这种情况下,观察者的选择可能会决定实验的结果---而无论是否实验的结果在逻辑上已经在一段时间以前被决定。
  “没有意义”简化主义者们说。“垃圾”唯物主义者们说。“完全荒谬”幼稚的现实主义者们说。“是的”数学家们说。
  惠勒的思想实验和量子力学的预言被带到了实验室中,接受实践的检验。一下就是所发生的。
  基本延迟实验(Basic delayed choice)
  1. 一个光子(或者一个其他量子单位)被向双缝发射。
  2. 此光子不被观察地从双缝中穿过,逻辑上,或者穿过双缝中的一个,或者穿过另一个,或者穿过两个。为了得到干涉图样,我们假设有某种东西一定穿过了双缝;为了了解粒子的分布情况,我们假设此光子一定穿过了双缝中的一个。无论此光子怎样运动,它都被假定在穿过的时候只穿过一个缝。
  3. 在穿过缝之后,光子就会朝着后墙飞去。
  4. 在后墙上,我们有两种分别的方法来探测此光子。
  5. 第一,我们有一个测量屏幕(或者其他可以测量光子打击到后幕上的水平位置,但是却不能区分光子从哪个方向飞过来的探测系统)。这个测量屏幕可以移动,如图上虚线所描述的那样;并且它还可以很快速的移动,即它可以在光子通过狭缝之后但是接触到后幕之前快速移动,即光子在图上区域3移动式时测量屏幕就可以进行相应移动已测量光子。或者,测量屏幕可以适当地离开。这种离开时实验者的决定,这个决定直到光子已经通过狭缝后才被作出。
  6. 一旦我们屏幕被去掉(此处的去掉不是屏幕的移动,而是在光子已经到了区域3时我们决定不使用屏幕,而是改用测量镜头),那么我们启动两个观测镜头。镜头紧密地聚焦,观察,观测两个狭缝之一之后的狭小空间。左边的镜头观测左边的狭缝,右边的镜头观测右边的狭缝。(在这里镜头的作用是确保如果此光子全部或者部分地从观察狭缝穿过时,你通过相应的镜头观测此狭缝的时候,你就会看见亮光,这样的话你就得到了关于管子究竟通过那个狭缝的信息。)
  现在光子已经在区域3了,即光子已经穿过狭缝了。此时,
  继续使用测两屏幕进行光子干涉实验---我们仍可以选择适当移动测量屏幕,在此情况下,我们不知道 光子穿过的是那条狭缝。
  改用测量镜头测量光子的粒子行为----或者我们选测去掉测量屏幕。如果我们这样做就会立即启动测量镜头,我们将会预计在左右两个镜头之一之中会有亮光,(或者两个镜头都会同时看见,但是我们预计这种情况不会发生)为什么?应为此光子必须通过或者左边,或者右边,或者两边的狭缝进入区域3。这就是所有的可能性。当我们通过镜头观察双缝,必定或看到以下情况之一:
  在左边的镜头中有亮光,而右边的镜头没有,这表明了光子从左边的狭缝进入区域3的。
  在右边的镜头中有亮光,而左边的镜头没有,这表明了光子从右边的狭缝进入区域3的。
  两边的镜头同时都有半强的亮光,这表明了光子同时从双缝穿过。
  哲学就是全部的可能性。
  基于对观测屏幕的观察,量子力学告诉我们我们得到了什么:Pattern4r,其图案与由两列对称波分别通过各自狭缝所造成的干涉图像极其相似。
  基于对镜头的观察,量子力学告诉我们我们得到了什么:Pattern5r,其完全相似于粒子从源处过来,通过这个或者那个狭缝,形成的亮光,并且在镜头中被我们观察到了。
  考虑不同的实验观测方式造成的不同结果—在光子已经进入区域3时,如果我们决定时当地移动测量屏幕,则我们会得到光子的波动性质的结论。;另一方面,如果我们此时去掉测量屏幕而改用测量镜头的话,我们就会得到光子的例子效应的结论。

使用道具 举报

anonymous 发表于 2009-7-14 08:51:54 |显示全部楼层
真狠啊,从哪找来的

使用道具 举报

光之洗礼

ck7543 发表于 2009-7-14 10:25:02 |显示全部楼层
本帖最后由 ck7543 于 2009-7-14 10:29 编辑

人择原理与其说是物理问题,倒不如说是哲学问题。至于延迟试验则可以用不确定性原理来解决。

使用道具 举报

巴尔·暗矛 发表于 2009-7-14 16:13:33 |显示全部楼层
这里是烈日酒馆么  我进错门了把

使用道具 举报

amor fati amor mundi

冒险者

光源 发表于 2009-7-14 20:12:36 |显示全部楼层
膜拜CK大神...另 亲爱的Anonymous...以前我一直想起个用户名叫做Guest来着...

使用道具 举报

您需要登录后才可以回帖 登录 | 加入萨鲁

本版积分规则

Archiver|手机版|萨鲁世界2006- ( 苏ICP备15007101号 )

GMT+8, 2024-5-10 19:13 , Processed in 0.026325 second(s), 6 queries , Gzip On.

Powered by Discuz! X3.4 Licensed

© 2001- Comsenz Inc.

返回顶部