穿越位面而来的旅人,
欢迎你来到萨鲁世界,
我为你带来一个消息,
先知邀请你前去见他。

不去                好的
查看: 1387|回复: 4

[转贴] 贵州喀斯特洼地中架设迄今世界最大口径射电天文望远镜 [复制链接]

光之洗礼

ck7543 发表于 2010-3-18 00:08:19 |显示全部楼层
本帖最后由 ck7543 于 2010-3-18 00:46 编辑

世界迄今最大单口径射电望远镜“FAST”工程,在贵州省平塘县一片名为“大窝凼”的喀斯特洼地中正式启动。
具有中国独立自主知识产权的FAST,是世界上正在建造及计划建造中口径最大、最具威力的单天线射电望远镜,其设计综合体现了我国高技术创新能力。
    这个500米口径射电望远镜外形与卫星天线相似,其接受面积相当于30个足球场之大,与号称“地面最大的机器”德国波恩100米望远镜相比,灵敏度提高约10倍;与被评为人类20世纪十大工程之首的美国Arecibo300米望远镜相比,其综合性能提高了约10倍。FAST建成后,不仅将成为世界第一大单口径天文望远镜,并将在未来20年至30年内保持世界领先地位。
    据中国科学院国家天文台FAST工程办公室副主任张海燕介绍,这个代表我国天文科学领域先进水平的项目,具有三项“独一无二”自主创新成果:将利用贵州天然的喀斯特洼坑作为台址;洼坑内创造性地铺设4600块单元组成500米球冠状主动反射面;将首次采用轻型索拖动机构和并联机器人,实现望远镜接收机的高精度定位。
    据悉,FAST工程投资超过7亿元,建设周期5年半。作为一个多学科基础研究平台,它将在宇宙大尺度物理学、物质深层次结构和规律等众多基础研究领域提供发展和突破的机遇,也将在国防建设和国家安全等方面发挥不可替代的作用,其建设还将推动众多高科技领域的发展。具有中国独立自主知识产权的FAST,是世界上正在建造及计划建造中口径最大、最具威力的单天线射电望远镜,其设计综合体现了我国高技术创新能力。

本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有账号?加入萨鲁

x

光之洗礼

ck7543 发表于 2010-3-18 00:09:12 |显示全部楼层
中国科学院国家天文台与贵州大学合作创办的天文联合研究中心日前挂牌成立,该中心将为建设于贵州省黔南自治州平塘县的500米口径射电望远镜(简称FAST)提供长期的技术支持和人员培养。

    FAST是目前世界上最大的单口径射电望远镜,被称为“天眼”的FAST工程投资7.3个亿,预计建设完工需要5年半时间。

    据了解,国家天文台·贵州大学天文联合研究中心是为了推进FAST在贵州建设运行的相关工作而建设的。在研究中心成立之后,国家天文台将与贵州大学合作开展包括机电、结构、通讯、电子信息在内的多个相关领域研究,使贵州大学成为向FAST输送人才的教学科研基地。

使用道具 举报

光之洗礼

ck7543 发表于 2010-3-18 00:11:05 |显示全部楼层
国家自然科学基金重点项目——500米口径球面射电望远镜(FAST),已确定台址详勘技术方案,并开始在贵州省平塘县境内进行台址勘察与建设。
  中国科学院与贵州省政府日前在贵阳召开的战略合作座谈会上,国家天文台台长严俊透露,总投资概算6.67亿元的FAST工程,台址详勘中标单位——贵州省建筑工程勘察院正在平塘县一处名为“大窝凼”的喀斯特洼地中实地勘探,还将完成FAST台址周围1公里范围设立台址保护区,及75公里范围内设立电波宁静区的工作。
  严俊介绍,第一阶段的台址勘察与开挖将使洼坑满足望远镜建设的需要,随后才能展开主动反射面和馈源支撑系统的建设,实现汇聚电磁波和望远镜指向跟踪功能,最终建成观测基地。除洼坑内创造性的铺设4600块单元组成500米球冠状主动反射面,还将首次采用轻型索拖动机构和并联机器人,实现望远镜接收机的高精度定位。
  “FAST工程将主要用于实现巡视宇宙中的中性氢、观测脉冲星、主导国际VLBI网和搜寻星际通讯信号等科学目标,而应用目标则包括空间飞行器的测控与通讯、脉冲星计时阵和自主导航等。”严俊说,“FAST是世界上正在建造及计划建造中口径最大、最具威力的单天线射电望远镜,将在未来20年至30年内保持世界领先地位。”
  据了解,科学家们经过近10年的搜寻和反复论证研判,才选择将FAST“安家”在贵州平塘县境内,因为这里具有得天独厚的地理、地质条件和极端宁静的自然条件。

使用道具 举报

光之洗礼

ck7543 发表于 2010-3-18 00:53:19 |显示全部楼层
500米口径球面射电望远镜(Five hundred meters Aperture Spherical Telescope,简称FAST)是国家科教领导小组审议确定的国家九大科技基础设施之一,拟采用我国科学家独创的设计和我国贵州南部的喀斯特洼地的独特地形条件,建设一个约30个足球场大的高灵敏度的巨型射电望远镜。FAST建成后将成为世界上最大口径的射电望远镜,FAST与号称“地面最大的机器”的德国波恩100米望远镜相比,灵敏度提高约10倍;与排在阿波罗登月之前、被评为人类20世纪十大工程之首的美国Arecibo 300米望远镜相比,其综合性能提高约10倍。作为世界最大的单口径望远镜,FAST将在未来20~30年保持世界一流设备的地位。1994年开始,通过不断探索,中国天文学家提出在贵州喀斯特洼地中建造“500 米口径球面射电望远镜”(FAST)的建议。
  2007年08月28日 历经12年的艰苦预研究,国家“十一五”重大科学工程——500 米口径球面射电望远镜FAST项目获国家立项批准,同时标志着这项受到国内外广泛关注的“世界第一大单口径望远镜”项目正式转入工程设计和建造阶段。
  2008年12月26日,具有我国独立自主知识产权的国家重大科技基础设施—500米口径球面射电望远镜(FAST)工程奠基仪式在FAST台址—贵州省黔南州平塘县大窝凼洼地举行。
  2009年6月9日, FAST工程详勘招标工作在国信招标集团有限公司的组织下圆满结束。贵州省建筑工程勘察院脱颖而出中标。
  2009年8月19日, 500米口径球面射电望远镜(FAST),已确定台址详勘技术方案,并开始在贵州省平塘县境内进行台址勘察与建设。光和广播电视信号都是以光速传播的电磁波,区别只在波长。千百年来人类只是通过可见光波段观测宇宙,而实际上天体的辐射覆盖整个电磁波段。与通讯用微波天线相似,射电天文望远镜通常由三个主要部分构成:汇聚电磁波的反射面、收集信号的接收机以及指向装置。
  为实现跨越式发展,中国天文界提出建造世界最大的单口径射电望远镜 ——500米口径球面射电天文望远镜(FAST)。它具有3项自主创新:利用贵州天然的喀斯特洼坑作为台址;洼坑内铺设数千块单元组成500米球冠状主动反射面;采用轻型索拖动机构和并联机器人,实现望远镜接收机的高精度定位。全新的设计思路,加之得天独厚的台址优势,FAST突破了望远镜的百米工程极限,开创了建造巨型射电望远镜的新模式。FAST作为一个多学科基础研究平台,有能力将中性氢观测延伸至宇宙边缘,观测暗物质和暗能量,寻找第一代天体。能用一年时间发现约7000颗脉冲星,研究极端状态下的物质结构与物理规律;有希望发现奇异星和夸克星物质;发现中子星——黑洞双星,无需依赖模型精确测定黑洞质量;通过精确测定脉冲星到达时间来检测引力波;作为最大的台站加入国际甚长基线网,为天体超精细结构成像;还可能发现高红移的巨脉泽星系,实现银河系外第一个甲醇超脉泽的观测突破;用于搜寻识别可能的星际通讯信号,寻找地外文明等等。
  FAST在国家重大需求方面有重要应用价值。把我国空间测控能力由地球同步轨道延伸至太阳系外缘,将深空通讯数据下行速率提高100倍。脉冲星到达时间测量精度由目前的120纳秒提高至30纳秒,成为国际上最精确的脉冲星计时阵,为自主导航这一前瞻性研究制作脉冲星钟。进行高分辨率微波巡视,以1Hz的分辨率诊断识别微弱的空间讯号,作为被动战略雷达为国家安全服务。作为“子午工程”的非相干散射雷达接收系统,提供高分辨率和高效率的地面观测;跟踪探测日冕物质抛射事件,服务于太空天气预报。
  FAST研究涉及了众多高科技领域,如天线制造、高精度定位与测量、高品质无线电接收机、传感器网络及智能信息处理、超宽带信息传输、海量数据存储与处理等。FAST关键技术成果可应用于诸多相关领域,如大尺度结构工程、公里范围高精度动态测量、大型工业机器人研制以及多波束雷达装置等。FAST的建设经验将对我国制造技术向信息化、极限化和绿色化的方向发展产生影响。
  有了FAST,边远闭塞的黔南喀斯特山区将变成世人瞩目的国际天文学术中心,成为把贵州展现给世界的新窗口。以FAST为主体的天文科普基地将推进我国西部、甚至全国的科普工作,教育青少年、宣传公众与决策层,为 FAST的系统构成, 在贵州喀斯特洼地内铺设口径为500米的球冠形主动反射面,通过主动控制在观测方向形成300米口径瞬时抛物面;采用光机电一体化的索支撑轻型馈源平台,加之馈源舱内的二次调整装置,在馈源与反射面之间无刚性连接的情况下,实现高精度的指向跟踪;在馈源舱内配置覆盖频率70MHz-30GHz的多波段、多波束馈源和接收机系统;针对FAST科学目标发展不同用途的终端设备;建造一流的天文观测站。

FAST的预研究历时13年,由中国科学院国家天文台主持,全国20余所大学和研究所的百余位科技骨干参与了此项工作。得到了中科院知识创新工程首批重大项目和重要方向性项目以及国家自然科学基金会重点项目的经费支持。FAST有5项关键技术,包括贵州喀斯特洼地台址评估、主动反射面、光机电一体化的馈源支撑系统、高精度的测量与控制和接收机系统等,都已完成了分析论证和模型实验。
  主动反射面  半径~300m, 口径~500m,球冠张角 110-120°  
有效照明口径  Dill=300m  
焦比  0.467  
天空覆盖  天顶角40°
工作频率  70MHz-3GHz  
灵敏度
  (L波段)  天线有效面积与系统噪声温度之比 A/T~2000 m2/K
  系统噪声温度T~20K  
分辨率(L波段)  2.9′  
多波束(L波段)  19个  
观测换源时间  <10min  
指向精度  8″

使用道具 举报

光之洗礼

ck7543 发表于 2010-3-18 00:58:18 |显示全部楼层
射电望远镜(radio telescope)是指观测和研究来自天体的射电波的基本设备﹐可以测量天体射电的强度、频谱及偏振等量。包括收集射电波的定向天线﹐放大射电信号的高灵敏度接收机﹐信息记录﹑处理和显示系统等。
经典射电望远镜的基本原理和光学反射望远镜相似﹐投射来的电磁波被一精确镜面反射后﹐同相到达公共焦点。用旋转抛物面作镜面易于实现同相聚焦﹐因此﹐射电望远镜天线大多是抛物面。射电望远镜表面和一理想抛物面的均方误差如不大于λ/16~λ/10﹐该望远镜一般就能在波长大于λ的射电波段上有效地工作。对米波或长分米波观测﹐可以用金属网作镜面﹔而对厘米波和毫米波观测﹐则需用光滑精确的金属板(或镀膜)作镜面。从天体投射来并汇集到望远镜焦点的射电波﹐必须达到一定的功率电平﹐才能为接收机所检测。目前的检测技术水平要求最弱的电平一般应达 10 ─20瓦。射频信号功率首先在焦点处放大10~1﹐000倍﹐并变换成较低频率(中频)﹐然后用电缆将其传送至控制室﹐在那里再进一步放大﹑检波﹐最后以适于特定研究的方式进行记录﹑处理和显示。
  天线收集天体的射电辐射,接收机将这些信号加工、转化成可供记录、显示的形式,终端设备把信号记录下来,并按特定的要求进行某些处理然后显示出来。表征射电望远镜性能的基本指标是空间分辨率和灵敏度,前者反映区分两个天球上彼此靠近的射电点源的能力,后者反映探测微弱射电源的能力。射电望远镜通常要求具有高空间分辨率和高灵敏度。射电天文所研究的对象﹐有太阳那样强的连续谱射电源﹐有辐射很强但极其遥远因而角径很小的类星体﹐有角径和流量密度都很小的恒星﹐也有频谱很窄﹑角径很小的天体微波激射源等。为了检测到所研究的射电源的信号﹐将它从邻近背景源中分辨出来﹐并进而观测其结构细节﹐射电望远镜必须有足够的灵敏度和分辨率。
  灵敏度和分辨率是衡量射电望远镜性能的两个重要指标。灵敏度是指射电望远镜"最低可测"的能量值,这个值越低灵敏度越高。为提高灵敏度常用的办法有降低接收机本身的固有噪声,增大天线接收面积,延长观测积分时间等。分辨率是指区分两个彼此靠近射电源的能力,分辨率越高就能将越近的两个射电源分开。那么,怎样提高射电望远镜的分辨率呢?对单天线射电望远镜来说,天线的直径越大分辨率越高。但是天线的直径难于作得很大,目前单天线的最大直径小于300米,对于波长较长的射电波段分辨率仍然很低。因此就提出了使用两架射电望远镜构成的射电干涉仪。对射电干涉仪来说,两个天线的最大间距越大分辨率越高。另外,在天线的直径或者两天线的间距一定时,接收的无线电波长越短分辨率越高。拥有高灵敏度。高分辨率的射电望远镜,才能让我们在射电波段"看"到更远,更清晰的宇宙天体。
  分辨率指的是区分两个彼此靠近的相同点源的能力﹐因为两个点源角距须大于天线方向图的半功率波束宽度时方可分辨﹐故宜将射电望远镜的分辨率规定为其主方向束的半功率宽 。 为电波的衍射所限﹐对简单的射电望远镜﹐它由天线孔径的物理尺寸D 和波长λ决定。1931年,在美国新泽西州的贝尔实验室里,负责专门搜索和鉴别电话干扰信号的美国人KG·杨斯基发现:有一种每隔23小时56分04秒出现最大值的无线电干扰。经过仔细分析,他在1932年发表的文章中断言:这是来自银河系中射电辐射。由此,杨斯基开创了用射电波研究天体的新纪元。当时他使用的是长30.5米、高3.66米的旋转天线阵,在14.6米波长取得了30度宽的 “扇形”方向束。此后,射电望远镜的历史便是不断提高分辨率和灵敏度的历史。
  自从杨斯基宣布接收到银河系的射电信号后,美国人G·雷伯潜心试制射电望远镜,终于在1937年制造成功。这是一架在第二次世界大战以前全世界独一无二的抛物面型射电望远镜。它的抛物面天线直径为9.45米,在1.87米波长取得了12度的 “铅笔形”方向束,并测到了太阳以及其它一些天体发出的无线电波。因此,雷伯被称为是抛物面型射电望远镜的首创者。
  1946年﹐英国曼彻斯特大学开始建造直径66.5米的固定抛物面射电望远镜﹐1955年建成当时世界上最大的76米直径的可转抛物面射电望远镜。与此同时﹐澳﹑美﹑苏﹑法﹑荷等国也竞相建造大小不同和形式各异的早期射电望远镜。除了一些直径在10米以下﹑主要用于观测太阳的设备外﹐还出现了一些直径20~30米的抛物面望远镜﹐发展了早期的射电干涉仪和综合孔径射电望远镜。六十年代以来﹐相继建成的有美国国立射电天文台的42.7米﹑加拿大的45.8米﹑澳大利亚的64米全可转抛物面﹑美国的直径 305米固定球面﹑工作于厘米和分米波段的射电望远镜(见固定球面射电望远镜)以及一批直径10米左右的毫米波射电望远镜。因为可转抛物面天线造价昂贵﹐固定或半固定孔径形状(包括抛物面﹑球面﹑抛物柱面﹑抛物面截带)的天线的技术得到发展﹐从而建成了更多的干涉仪和十字阵(见米尔斯十字)。
  1962年 Ryle 发明了综合孔径射电望远镜并获得了1974年诺贝尔物理学奖。
  射电天文技术最初的起步和发展得益于二战后大批退役雷达的"军转民用"。射电望远镜和雷达的工作方式不同,雷达是先发射无线电波再接收物体反射的回波,射电望远镜只是被动地接收天体发射的无线电波.。20世纪50、60年代,随着射电技术的发展和提高,人们研究成功了射电干涉仪,甚长基线干涉仪,综合孔径望远镜等新型的射电望远镜射电干涉技术使人们能更有效地从噪音中提取有用的信号;甚长基线干涉仪通常是相距上千公里的。几台射电望远镜作干涉仪方式的观测,极大地提高了分辨率。
  六十年代末至七十年代初﹐不仅建成了一批技术上成熟﹑有很高灵敏度和分辨率的综合孔径射电望远镜﹐还发明了有极高分辨率的甚长基线干涉仪这种所谓现代射电望远镜。另一方面还在计算技术基础上改进了经典射电望远镜天线的设计﹐建成直径100米的大型精密可跟踪抛物面射电望远镜(德意志联邦共和国波恩附近。
  上世纪80年代以来,欧洲的VLBI网﹑美国的VLBA阵﹑日本的空间VLBI相继投入使用,这是新一代射电望远镜的代表,它们的灵敏度﹑分辨率和观测波段上都大大超过了以往的望远镜。其中,美国的超常基线阵列(VLBA)由10个抛物天线组成,横跨从夏威夷到圣科洛伊克斯8000千米的距离,其精度是哈勃太空望远镜的500倍,是人眼的60万倍。它所达到的分辨率相当让一个人站在纽约看洛杉矶的报纸。
  今天射电的分辨率高于其它波段几千倍,能更清晰地揭示射电天体的内核;综合孔径技术的研制成功使射电望远镜具备了方便的成像能力,综合孔径射电望远镜相当于工作在射电波段的照相机。根据天线总体结构的不同,射电望远镜按设计要求可以分为连续和非连续孔径射电望远镜两大类。前者的主要代表是采用单盘抛物面天线的经典式射电望远镜,后者是以干涉技术为基础的各种组合天线系统。20世纪60年代产生了两种新型的非连续孔径射电望远镜——甚长基线干涉仪和综合孔径射电望远镜,前者具有极高的空间分辨率,后者能获得清晰的射电图像 。世界上最大的可跟踪型经典式射电望远镜其抛物面天线直径长达100米,安装在德国马克斯·普朗克射电天文研究所 ;世界上最大的非连续孔径射电望远镜是甚大天线阵,安装在美国国立射电天文台。
  为了观测弱射电源的需要﹐射电望远镜必须有较大孔径﹐并能对射电目标进行长时间的跟踪或扫描。此外﹐还必须综合考虑设备的造价和工艺上的现实性。按机械装置和驱动方式﹐连续孔径射电望远镜(它通常又是非连续孔径的基本单元)还可分为三种类型。
  全可转型或可跟踪型
  可在两个坐标转动﹐分为赤道式装置和地平式装置两种﹐如同在可跟踪抛物面射电望远镜中使用的。
  部分可转型
  可在一坐标(赤纬方向)转动﹐赤经方向靠地球自转扫描﹐又称中星仪式(见带形射电望远镜)。
  固定型
  主要天线反射面固定﹐一般用移动馈源(又称照明器)或改变馈源相位的方法。
  ?
  射电观测在很宽的频率范围进行﹐检测和信息处理的射电技术又远较光学波段灵活多样﹐所以射电望远镜种类繁多﹐还可以根据其他准则分类﹕诸如按接收天线的形状可分为抛物面﹑抛物柱面﹑球面﹑抛物面截带﹑喇叭﹑螺旋﹑行波﹑偶极天线等射电望远镜﹔按方向束形状可分为铅笔束﹑扇束﹑多束等射电望远镜﹔按工作类型可分为全功率﹑扫频﹑快速成像等类射电望远镜﹔按观测目的可分为测绘﹑定位﹑定标﹑偏振﹑频谱﹑日象等射电望远镜。关于非连续孔径射电望远镜﹐主要是各类射电干涉仪。射电望远镜与光学望远镜不同,它既没有高高竖起的望远镜镜简,也没有物镜,目镜,它由天线和接收系统两大部分组成。
  巨大的天线是射电望远镜最显著的标志,它的种类很多,有抛物面天线,球面天线,半波偶极子天线,螺旋天线等。最常用的是抛物面天线。天线对射电望远镜来说,就好比是它的眼睛,它的作用相当于光学望远镜中的物镜。它要把微弱的宇宙无线电信号收集起来,然后通过一根特制的管子(波导)把收集到的信号传送到接收机中去放大。接收系统的工作原理和普通收音机差不多,但它具有极高的灵敏度和稳定性。接收系统将信号放大,从噪音中分离出有用的信号,并传给后端的计算机记录下来。记录的结果为许多弯曲的曲线,天文学家分析这些曲线,得到天体送来的各种宇宙信息。当代先进射电望远镜有﹕以德意志联邦共和国 100米望远镜为代表的大﹑中型厘米波可跟踪抛物面射电望远镜﹔以美国国立射电天文台﹑瑞典翁萨拉天文台和日本东京天文台的设备为代表的毫米波射电望远镜﹔以即将完成的美国甚大天线阵。贵州平塘的射电望远镜FAST是现在世界上最大口径的射电望远镜。把造价和效能结合起来考虑﹐今后直径100米那样的大射电望远镜大概只能有少量增加﹐而单个中等孔径厘米波射电望远镜的用途越来越少。主要单抛物面天线将更普遍地并入或扩大为甚长基线﹑连线干涉仪和综合孔径系统工作。随著设计﹑工艺和校准技术的改进﹐将会有更多﹑更精密的毫米波望远镜出现。综合孔径望远镜会得到发展以期获得更大的空间﹑时间和频率覆盖。甚长基线干涉系统除了增加数量外﹐预期最终将能利用定点卫星实现实时数据处理﹐大大提吖鄄饽芰ΑL厥庑巫锤咴鲆姗p低噪音天线设计方法的成熟﹐把综合孔径技术同甚长基线独立本振干涉仪技术结合起来的甚长基线干涉仪网和干涉仪阵的试验﹐很可能孕育出新一代的射电望远镜。中国、日本、韩国三国科学家正利用他们共同构建的世界最大射电望远镜阵,探测银河系结构、超大质量黑洞等深空奥秘。
  三国天文学界在各自独立开发的射电天体探测网基础上,整合了东亚地区直径约6000公里范围内19台射电天文望远镜,覆盖了从日本小笠原、北海道至中国乌鲁木齐、昆明的广阔地域,成为世界上最庞大的射电天文观测网络。如果配合日本“月亮女神”绕月卫星上搭载的观天设备,这个望远镜阵的直径将会扩展到2.4万公里。
  东亚甚长基线干涉测量(VLBI)观测计划中方科学家、中国科学院上海天文台研究员沈志强31日在接受新华社记者专访时说:“中国天文学家经过30多年努力建成的VLBI网,对国际上射电天文学的研究,做出了很大的贡献。我们还成功地将VLBI技术用于中国首颗绕月卫星的测轨工作,已取得巨大成功。”
  甚长基线干涉测量是国际天文学界目前使用的一项高分辨率、高测量精度的观测技术,用于天体的精确定位和精细结构研究。一个完整的VLBI观测系统通常由两个以上射电望远镜观测站和一个数据处理中心组成。中科院VLBI观测系统目前由上海25米直径、北京50米直径、昆明40米直径和乌鲁木齐25米直径等4台射电天文望远镜,以及上海数据处理中心组成。
  沈志强说,各观测站同时跟踪观测同一目标,并将观测数据记录或实时传送到数据处理中心,计算机依靠这些观测值计算得出目标天体的精确位置。
  “嫦娥一号”卫星测轨任务与一般天文学VLBI观测有很大不同。对绕月卫星的测轨,尤其是进入环月正常运行前的各轨道段,不允许有丝毫差错,必须在10分钟内提供准确的测轨结果。在“嫦娥一号”发射后的一个月内,4个观测站和上海数据处理中心出色完成了测轨任务,提供的测轨数据滞后时间一般为5至6分钟。
  中国VLBI网三周前刚进行了一次远程数据采集、海量存储、数据处理实验,利用高速互联网将VLBI观测数据,实时传送到数据处理中心并进行实时相关处理,以取代传统的VLBI数据邮寄方式。半个月前,包括上海和乌鲁木齐两个观测站在内的世界17个射电望远镜观测站进行的实时接力观测演示,也获得成功。
  东亚VLBI观测网的主要工作将是完善日本射电天体探测计划正在绘制的银河系图。日本科学家相信,由12台望远镜组成的日本射电天体观测网,加上中国的4台望远镜以及韩国刚建成的3台21米口径望远镜,恒星定位的精度将成倍提高。
  “这一独特的工作将帮助我们获得关于星系结构的优质数据。”日本国立天文台电波天文学教授小林秀行在接受新华社记者采访时说。
  韩国和日本科学家正在开发一种特制的计算机,用于整合海量的观测数据,这套计算设备,计划于明年底在韩国首尔投入使用。科学家预计,东亚VLBI观测计划将于2010年全面展开。
  自400年前意大利人伽利略首次用望远镜观测星空,人类通常靠光学设备进行天文学研究。人们后来发现,天体除了发出可见光,还发出电磁波。1932年,美国贝尔实验室工程师卡尔·央斯基偶然发现了来自银河系中心的电波,射电天文学从此发端。碟状天线一般的射电天文望远镜,通过接收天体无线电波或主动发射电波并接收回波,确定遥远天体的形状的结构。

使用道具 举报

您需要登录后才可以回帖 登录 | 加入萨鲁

本版积分规则

Archiver|手机版|萨鲁世界2006- ( 苏ICP备15007101号 )

GMT+8, 2024-6-17 13:05 , Processed in 0.025587 second(s), 7 queries , Gzip On.

Powered by Discuz! X3.4 Licensed

© 2001- Comsenz Inc.

返回顶部